Pyfolio Integration

Alphalens can simulate the performance of a portfolio where the factor values are use to weight stocks. Once the portfolio is built, it can be analyzed by Pyfolio. For details on how this portfolio is built see: - alphalens.performance.factor_returns - alphalens.performance.cumulative_returns - alphalens.performance.create_pyfolio_input

Imports & Settings

[1]:
Copy to clipboard
import warnings
warnings.filterwarnings('ignore')
Copy to clipboard
[2]:
Copy to clipboard
import alphalens
import pyfolio
import pandas as pd
Copy to clipboard
[3]:
Copy to clipboard
%matplotlib inline
Copy to clipboard

Load Data

First load some stocks data

[4]:
Copy to clipboard
tickers = [ 'ACN', 'ATVI', 'ADBE', 'AMD', 'AKAM', 'ADS', 'GOOGL', 'GOOG', 'APH', 'ADI', 'ANSS', 'AAPL',
'AVGO', 'CA', 'CDNS', 'CSCO', 'CTXS', 'CTSH', 'GLW', 'CSRA', 'DXC', 'EBAY', 'EA', 'FFIV', 'FB',
'FLIR', 'IT', 'GPN', 'HRS', 'HPE', 'HPQ', 'INTC', 'IBM', 'INTU', 'JNPR', 'KLAC', 'LRCX', 'MA', 'MCHP',
'MSFT', 'MSI', 'NTAP', 'NFLX', 'NVDA', 'ORCL', 'PAYX', 'PYPL', 'QRVO', 'QCOM', 'RHT', 'CRM', 'STX',
'AMG', 'AFL', 'ALL', 'AXP', 'AIG', 'AMP', 'AON', 'AJG', 'AIZ', 'BAC', 'BK', 'BBT', 'BRK.B', 'BLK', 'HRB',
'BHF', 'COF', 'CBOE', 'SCHW', 'CB', 'CINF', 'C', 'CFG', 'CME', 'CMA', 'DFS', 'ETFC', 'RE', 'FITB', 'BEN',
'GS', 'HIG', 'HBAN', 'ICE', 'IVZ', 'JPM', 'KEY', 'LUK', 'LNC', 'L', 'MTB', 'MMC', 'MET', 'MCO', 'MS',
'NDAQ', 'NAVI', 'NTRS', 'PBCT', 'PNC', 'PFG', 'PGR', 'PRU', 'RJF', 'RF', 'SPGI', 'STT', 'STI', 'SYF', 'TROW',
'ABT', 'ABBV', 'AET', 'A', 'ALXN', 'ALGN', 'AGN', 'ABC', 'AMGN', 'ANTM', 'BCR', 'BAX', 'BDX', 'BIIB', 'BSX',
'BMY', 'CAH', 'CELG', 'CNC', 'CERN', 'CI', 'COO', 'DHR', 'DVA', 'XRAY', 'EW', 'EVHC', 'ESRX', 'GILD', 'HCA',
'HSIC', 'HOLX', 'HUM', 'IDXX', 'ILMN', 'INCY', 'ISRG', 'IQV', 'JNJ', 'LH', 'LLY', 'MCK', 'MDT', 'MRK', 'MTD',
'MYL', 'PDCO', 'PKI', 'PRGO', 'PFE', 'DGX', 'REGN', 'RMD', 'SYK', 'TMO', 'UNH', 'UHS', 'VAR', 'VRTX', 'WAT',
'MMM', 'AYI', 'ALK', 'ALLE', 'AAL', 'AME', 'AOS', 'ARNC', 'BA', 'CHRW', 'CAT', 'CTAS', 'CSX', 'CMI', 'DE',
'DAL', 'DOV', 'ETN', 'EMR', 'EFX', 'EXPD', 'FAST', 'FDX', 'FLS', 'FLR', 'FTV', 'FBHS', 'GD', 'GE', 'GWW',
'HON', 'INFO', 'ITW', 'IR', 'JEC', 'JBHT', 'JCI', 'KSU', 'LLL', 'LMT', 'MAS', 'NLSN', 'NSC', 'NOC', 'PCAR',
'PH', 'PNR', 'PWR', 'RTN', 'RSG', 'RHI', 'ROK', 'COL', 'ROP', 'LUV', 'SRCL', 'TXT', 'TDG', 'UNP', 'UAL',
'AES', 'LNT', 'AEE', 'AEP', 'AWK', 'CNP', 'CMS', 'ED', 'D', 'DTE', 'DUK', 'EIX', 'ETR', 'ES', 'EXC']
Copy to clipboard

YFinance Download

[5]:
Copy to clipboard
import yfinance as yf
import pandas_datareader.data as web
yf.pdr_override()

df = web.get_data_yahoo(tickers, start='2015-01-01',  end='2017-01-01')
df.index = pd.to_datetime(df.index, utc=True)
Copy to clipboard
[*********************100%***********************]  247 of 247 completed

17 Failed downloads:
- RHT: No data found, symbol may be delisted
- JEC: No data found, symbol may be delisted
- RTN: No data found, symbol may be delisted
- BBT: No data found, symbol may be delisted
- BHF: Data doesn't exist for startDate = 1420092000, endDate = 1483250400
- AGN: No data found, symbol may be delisted
- BRK.B: No data found, symbol may be delisted
- ARNC: Data doesn't exist for startDate = 1420092000, endDate = 1483250400
- HRS: No data found, symbol may be delisted
- IR: Data doesn't exist for startDate = 1420092000, endDate = 1483250400
- CELG: No data found, symbol may be delisted
- BCR: No data found for this date range, symbol may be delisted
- STI: No data found, symbol may be delisted
- MYL: No data found, symbol may be delisted
- LUK: No data found for this date range, symbol may be delisted
- LLL: No data found, symbol may be delisted
- ETFC: No data found, symbol may be delisted
Copy to clipboard

Data Formatting

[6]:
Copy to clipboard
df = df.stack()
df.index.names = ['date', 'asset']
df.info()
Copy to clipboard
<class 'pandas.core.frame.DataFrame'>
MultiIndex: 114987 entries, (Timestamp('2015-01-02 00:00:00+0000', tz='UTC'), 'A') to (Timestamp('2016-12-30 00:00:00+0000', tz='UTC'), 'XRAY')
Data columns (total 6 columns):
 #   Column     Non-Null Count   Dtype
---  ------     --------------   -----
 0   Adj Close  114987 non-null  float64
 1   Close      114987 non-null  float64
 2   High       114987 non-null  float64
 3   Low        114987 non-null  float64
 4   Open       114987 non-null  float64
 5   Volume     114987 non-null  float64
dtypes: float64(6)
memory usage: 5.7+ MB
Copy to clipboard

Compute Factor

We’ll compute a simple mean reversion factor looking at recent stocks performance: stocks that performed well in the last 5 days will have high rank and vice versa.

[7]:
Copy to clipboard
factor = df.loc[:,'Open'].unstack('asset')
factor = -factor.pct_change(5)
factor = factor.stack()
Copy to clipboard

The pricing data passed to alphalens should contain the entry price for the assets so it must reflect the next available price after a factor value was observed at a given timestamp. Those prices must not be used in the calculation of the factor values for that time. Always double check to ensure you are not introducing lookahead bias to your study.

The pricing data must also contain the exit price for the assets, for period 1 the price at the next timestamp will be used, for period 2 the price after 2 timestats will be used and so on.

There are no restrinctions/assumptions on the time frequencies a factor should be computed at and neither on the specific time a factor should be traded (trading at the open vs trading at the close vs intraday trading), it is only required that factor and price DataFrames are properly aligned given the rules above.

In our example, before the trading starts every day, we observe yesterday factor values. The price we pass to alphalens is the next available price after that factor observation: the daily open price that will be used as assets entry price. Also, we are not adding additional prices so the assets exit price will be the following days open prices (how many days depends on ‘periods’ argument). The retuns computed by Alphalens will therefore based on assets open prices.

[8]:
Copy to clipboard
pricing = df.loc[:,'Open'].unstack('asset').iloc[1:]
Copy to clipboard

Run Alphalens Analysis

Get Input Data

[9]:
Copy to clipboard
factor_data = alphalens.utils.get_clean_factor_and_forward_returns(factor,
                                                                   pricing,
                                                                   periods=(1, 3, 5),
                                                                   quantiles=5,
                                                                   bins=None)
Copy to clipboard
Dropped 1.0% entries from factor data: 1.0% in forward returns computation and 0.0% in binning phase (set max_loss=0 to see potentially suppressed Exceptions).
max_loss is 35.0%, not exceeded: OK!
Copy to clipboard

Summary Tear Sheet

[10]:
Copy to clipboard
alphalens.tears.create_summary_tear_sheet(factor_data)
Copy to clipboard
Quantiles Statistics
Copy to clipboard
min max mean std count count %
factor_quantile
1 -0.750000 0.074766 -0.041785 0.036192 22724 20.163981
2 -0.113307 0.094112 -0.013844 0.020647 22507 19.971428
3 -0.075532 0.109737 -0.001742 0.019542 22367 19.847200
4 -0.046988 0.127086 0.010283 0.020051 22500 19.965216
5 -0.029071 0.428571 0.037100 0.033545 22598 20.052176
Returns Analysis
Copy to clipboard
1D 3D 5D
Ann. alpha 0.279 0.122 0.090
beta 0.104 0.043 0.050
Mean Period Wise Return Top Quantile (bps) 4.890 2.209 1.824
Mean Period Wise Return Bottom Quantile (bps) -2.953 -1.651 -1.705
Mean Period Wise Spread (bps) 7.843 3.855 3.523
Information Analysis
Copy to clipboard
1D 3D 5D
IC Mean 0.016 0.012 0.016
IC Std. 0.173 0.169 0.169
Risk-Adjusted IC 0.091 0.068 0.098
t-stat(IC) 2.012 1.517 2.171
p-value(IC) 0.045 0.130 0.030
IC Skew 0.081 0.155 0.069
IC Kurtosis 0.342 0.335 0.409
Turnover Analysis
Copy to clipboard
1D 3D 5D
Quantile 1 Mean Turnover 0.347 0.601 0.788
Quantile 2 Mean Turnover 0.605 0.744 0.800
Quantile 3 Mean Turnover 0.652 0.763 0.786
Quantile 4 Mean Turnover 0.605 0.744 0.796
Quantile 5 Mean Turnover 0.350 0.596 0.781
1D 3D 5D
Mean Factor Rank Autocorrelation 0.749 0.359 -0.016
<Figure size 432x288 with 0 Axes>
Copy to clipboard
../_images/notebooks_pyfolio_integration_22_10.png

Run Pyfolio Analysis

Get Input Data

We can see in Alphalens analysis that quantiles 1 and 5 are the most predictive so we’ll build a portfolio data using only those quantiles.

[11]:
Copy to clipboard
pf_returns, pf_positions, pf_benchmark = \
    alphalens.performance.create_pyfolio_input(factor_data,
                                               period='1D',
                                               capital=100000,
                                               long_short=True,
                                               group_neutral=False,
                                               equal_weight=True,
                                               quantiles=[1,5],
                                               groups=None,
                                               benchmark_period='1D')
Copy to clipboard

Pyfolio Tearsheet

Now that we have prepared the data we can run Pyfolio functions

[12]:
Copy to clipboard
pyfolio.tears.create_full_tear_sheet(pf_returns,
                                     positions=pf_positions,
                                     benchmark_rets=pf_benchmark)
Copy to clipboard
Start date2015-01-09
End date2016-12-22
Total months34
Backtest
Annual return 7.349%
Cumulative returns 22.253%
Annual volatility 4.984%
Sharpe ratio 1.45
Calmar ratio 1.63
Stability 0.85
Max drawdown -4.508%
Omega ratio 1.37
Sortino ratio 2.33
Skew 1.56
Kurtosis 21.29
Tail ratio 1.20
Daily value at risk -0.599%
Gross leverage 0.69
Alpha 0.07
Beta 0.11
Worst drawdown periods Net drawdown in % Peak date Valley date Recovery date Duration
0 4.51 2016-03-30 2016-11-14 NaT NaN
1 2.29 2015-09-17 2015-09-28 2015-10-23 27
2 2.24 2016-01-04 2016-01-19 2016-02-11 29
3 1.97 2015-08-17 2015-08-21 2015-08-24 6
4 1.97 2015-02-04 2015-02-13 2015-04-01 41
Stress Events mean min max
Fall2015 0.03% -1.40% 3.45%
New Normal 0.03% -1.40% 3.45%
Top 10 long positions of all time max
asset
ABBV 1.11%
ABT 1.11%
ACN 1.11%
ADS 1.11%
AEE 1.11%
AEP 1.11%
AES 1.11%
ALL 1.11%
AWK 1.11%
BSX 1.11%
Top 10 short positions of all time max
asset
AAPL -1.11%
ADI -1.11%
AKAM -1.11%
ALLE -1.11%
AMD -1.11%
ANSS -1.11%
AON -1.11%
ATVI -1.11%
AVGO -1.11%
AYI -1.11%
Top 10 positions of all time max
asset
AAPL 1.11%
ABBV 1.11%
ABT 1.11%
ACN 1.11%
ADI 1.11%
ADS 1.11%
AEE 1.11%
AEP 1.11%
AES 1.11%
AKAM 1.11%
../_images/notebooks_pyfolio_integration_29_6.png
../_images/notebooks_pyfolio_integration_29_7.png
../_images/notebooks_pyfolio_integration_29_8.png

Subset Performance

Weekday Analysis

Sometimes it might be useful to analyze subets of your factor data, for example it could be interesting to see the comparison of your factor in different days of the week. Below we’ll see how to select and analyze factor data corresponding to Mondays, the positions will be held the for a period of 5 days

[13]:
Copy to clipboard
monday_factor_data = factor_data[ factor_data.index.get_level_values('date').weekday == 0 ]
Copy to clipboard
[14]:
Copy to clipboard
pf_returns, pf_positions, pf_benchmark = \
    alphalens.performance.create_pyfolio_input(monday_factor_data,
                                               period='5D',
                                               capital=100000,
                                               long_short=True,
                                               group_neutral=False,
                                               equal_weight=True,
                                               quantiles=[1,5],
                                               groups=None,
                                               benchmark_period='1D')
Copy to clipboard

Pyfolio Tearsheet

[15]:
Copy to clipboard
pyfolio.tears.create_full_tear_sheet(pf_returns,
                                     positions=pf_positions,
                                     benchmark_rets=pf_benchmark)
Copy to clipboard
Start date2015-01-12
End date2016-12-19
Total months33
Backtest
Annual return 3.309%
Cumulative returns 9.578%
Annual volatility 5.058%
Sharpe ratio 0.67
Calmar ratio 0.38
Stability 0.37
Max drawdown -8.687%
Omega ratio 1.40
Sortino ratio 1.23
Skew 4.96
Kurtosis 75.85
Tail ratio 1.73
Daily value at risk -0.624%
Gross leverage 0.13
Alpha 0.03
Beta 0.17
Worst drawdown periods Net drawdown in % Peak date Valley date Recovery date Duration
0 8.69 2015-12-20 2016-08-29 NaT NaN
1 2.22 2015-02-08 2015-03-23 2015-04-27 56
2 1.40 2015-06-28 2015-07-13 2015-08-24 41
3 0.61 2015-05-10 2015-05-18 2015-06-15 26
4 0.54 2015-10-04 2015-10-05 2015-10-12 6
Stress Events mean min max
Fall2015 0.10% -0.64% 4.61%
New Normal 0.01% -1.99% 4.61%
Top 10 long positions of all time max
asset
A 1.11%
AAL 1.11%
ADBE 1.11%
ADI 1.11%
AEE 1.11%
AEP 1.11%
AET 1.11%
AIG 1.11%
AIZ 1.11%
ALLE 1.11%
Top 10 short positions of all time max
asset
A -1.11%
AAL -1.11%
AAPL -1.11%
ABBV -1.11%
ABT -1.11%
ADBE -1.11%
ADI -1.11%
ADS -1.11%
AEE -1.11%
AEP -1.11%
Top 10 positions of all time max
asset
A 1.11%
AAL 1.11%
AAPL 1.11%
ABBV 1.11%
ABT 1.11%
ADBE 1.11%
ADI 1.11%
ADS 1.11%
AEE 1.11%
AEP 1.11%
../_images/notebooks_pyfolio_integration_36_6.png
../_images/notebooks_pyfolio_integration_36_7.png
../_images/notebooks_pyfolio_integration_36_8.png